Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

ProtoInnovations proposes to research, develop, and validate an innovative retractable robotic anchoring mechanism that works both in hard rock and granular soils permitting anchoring and subsequent repositioning of a lander, rover or other equipment. Our goal is to support a number of mission targets to Mars, the Moon, and asteroids. The technology proposed here is of special value to planetary missions involving extreme terrain mobility, small body/microgravity mobility, and missions that involve forceful interaction with the environment (e.g. drilling, digging, etc.) These missions are all ranked as High Priorities in NASA's Robotics, Tele-robotics, and Autonomous Systems Roadmap Technology Area 04 (April 2012). The use of retractable anchors could also benefit missions involving multi-rover exploration, instrument employment, infrastructure emplacement, etc. In Phase 1 we will: 1- Research the mechanics of robotic anchoring in hard rock and soft soils; 2- Design and prototype a working robotic anchoring mechanism; 3- Conduct proof-ofconcept and performance characterization testing; 4- Demonstrate the weight holding capacity of the prototype anchoring mechanism on a vertical and inverted surface.

Primary U.S. Work Locations and Key Partners

Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I

Completed Technology Project (2016 - 2016)

Organizations Performing Work	Role	Туре	Location
Protoinnovations,	Lead	Industry	Pittsburgh,
LLC	Organization		Pennsylvania
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas

Primary U.S. Work Locations	
Pennsylvania	Texas

Project Transitions

0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139686)

Images

Briefing Chart Image Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I (https://techport.nasa.gov/imag e/131659)

Final Summary Chart Image Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I Project Image (https://techport.nasa.gov/imag e/134216)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Protoinnovations, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Dimitrios Apostolopoulos

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

